Abstract
AbstractHere we report a facile, prompt protocol based on deep-learning techniques to sort out intricate phase identification and quantification problems in complex multiphase inorganic compounds. We simulate plausible powder X-ray diffraction (XRD) patterns for 170 inorganic compounds in the Sr-Li-Al-O quaternary compositional pool, wherein promising LED phosphors have been recently discovered. Finally, 1,785,405 synthetic XRD patterns are prepared by combinatorically mixing the simulated powder XRD patterns of 170 inorganic compounds. Convolutional neural network (CNN) models are built and eventually trained using this large prepared dataset. The fully trained CNN model promptly and accurately identifies the constituent phases in complex multiphase inorganic compounds. Although the CNN is trained using the simulated XRD data, a test with real experimental XRD data returns an accuracy of nearly 100% for phase identification and 86% for three-step-phase-fraction quantification.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
112 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献