Abstract
AbstractOxide semiconductors have been extensively studied as active channel layers of thin-film transistors (TFTs) for electronic applications. However, the field-effect mobility (μFE) of oxide TFTs is not sufficiently high to compete with that of low-temperature-processed polycrystalline-Si TFTs (50–100 cm2V−1s−1). Here, we propose a simple process to obtain high-performance TFTs, namely hydrogenated polycrystalline In2O3 (In2O3:H) TFTs grown via the low-temperature solid-phase crystallization (SPC) process. In2O3:H TFTs fabricated at 300 °C exhibit superior switching properties with µFE = 139.2 cm2V−1s−1, a subthreshold swing of 0.19 Vdec−1, and a threshold voltage of 0.2 V. The hydrogen introduced during sputter deposition plays an important role in enlarging the grain size and decreasing the subgap defects in SPC-prepared In2O3:H. The proposed method does not require any additional expensive equipment and/or change in the conventional oxide TFT fabrication process. We believe these SPC-grown In2O3:H TFTs have a great potential for use in future transparent or flexible electronics applications.
Funder
MEXT | Japan Society for the Promotion of Science
Iketani Science and Technology Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献