Temperature elevations can induce switches to homoclinic action potentials that alter neural encoding and synchronization

Author:

Hesse Janina,Schleimer Jan-Hendrik,Maier NikolausORCID,Schmitz DietmarORCID,Schreiber SusanneORCID

Abstract

AbstractAlmost seventy years after the discovery of the mechanisms of action potential generation, some aspects of their computational consequences are still not fully understood. Based on mathematical modeling, we here explore a type of action potential dynamics – arising from a saddle-node homoclinic orbit bifurcation - that so far has received little attention. We show that this type of dynamics is to be expected by specific changes in common physiological parameters, like an elevation of temperature. Moreover, we demonstrate that it favours synchronization patterns in networks – a feature that becomes particularly prominent when system parameters change such that homoclinic spiking is induced. Supported by in-vitro hallmarks for homoclinic spikes in the rodent brain, we hypothesize that the prevalence of homoclinic spikes in the brain may be underestimated and provide a missing link between the impact of biophysical parameters on abrupt transitions between asynchronous and synchronous states of electrical activity in the brain.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference52 articles.

1. Bernstein, J. Ueber den zeitlichen Verlauf der negativen Schwankung des Nervenstroms. Arch. f.ür. die Gesamt. Physiologie des. Menschen und der Tiere 1, 173 (1868).

2. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952).

3. Rinzel, J. & Ermentrout, G. B. Analysis of neural excitability and osciallations. In Methods in neuronal modeling: From synapses to networks (eds Koch, C. & Segev, I.) 2 edn, 251–291 (MIT Press, Cambridge MA, 1998).

4. Ermentrout, G. B. Type I membranes, phase resetting curves, and synchrony. Neural Comput. 8, 979 (1996).

5. Izhikevich, E. M. Dynamical Systems in Neuroscience (MIT Press, 2007).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3