Abstract
AbstractThe alkyne unit is a versatile building block in organic synthesis and the development of selective multifunctionalization of alkynes is an important object of research in this field. Herein, we report an interesting gold-catalyzed, four-component reaction that achieves the oxo-arylfluorination or oxo-arylalkenylation of internal aromatic or aliphatic alkynes, efficiently breaking a carbon-carbon triple bond and forming four new chemical bonds. The reaction divergence can be controlled by site-directing functional groups in the alkynes; the presence of a phosphonate unit favors the oxo-arylfluorination, while the carboxylate motif benefits oxo-arylalkenylation. This reaction is enabled by an Au(I)/Au(III) redox coupling process using Selectfluor as both an oxidant and a fluorinating reagent. A wide range of structurally diverse α,α-disubstituted ketones, and tri- or tetra-substituted unsaturated ketones have been prepared in synthetically valuable yields and with excellent chemo-, regio- and stereoselectivity. The gram-scale preparation and late-stage application of complex alkynes have further enhanced their synthetic value.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献