Abstract
AbstractSpatial attention is critical for recognizing behaviorally relevant objects in a cluttered environment. How the deployment of spatial attention aids the hierarchical computations of object recognition remains unclear. We investigated this in the laminar cortical network of visual area V4, an area strongly modulated by attention. We found that deployment of attention strengthened unique dependencies in neural activity across cortical layers. On the other hand, shared dependencies were reduced within the excitatory population of a layer. Surprisingly, attention strengthened unique dependencies within a laminar population. Crucially, these modulation patterns were also observed during successful behavioral outcomes that are thought to be mediated by internal brain state fluctuations. Successful behavioral outcomes were also associated with phases of reduced neural excitability, suggesting a mechanism for enhanced information transfer during optimal states. Our results suggest common computation goals of optimal sensory states that are attained by either task demands or internal fluctuations.
Funder
U.S. Department of Health & Human Services | NIH | National Eye Institute
U.S. Department of Health & Human Services | NIH | National Institute of Mental Health
Simons Foundation
Publisher
Springer Science and Business Media LLC