Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density
-
Published:2023-07-07
Issue:1
Volume:14
Page:
-
ISSN:2041-1723
-
Container-title:Nature Communications
-
language:en
-
Short-container-title:Nat Commun
Author:
Rehwald MartinORCID, Assenbaum StefanORCID, Bernert ConstantinORCID, Brack Florian-EmanuelORCID, Bussmann Michael, Cowan Thomas E.ORCID, Curry Chandra B.ORCID, Fiuza FredericoORCID, Garten MarcoORCID, Gaus LennartORCID, Gauthier MaxenceORCID, Göde Sebastian, Göthel Ilja, Glenzer Siegfried H.ORCID, Huang LingenORCID, Huebl AxelORCID, Kim Jongjin B.ORCID, Kluge ThomasORCID, Kraft StephanORCID, Kroll FlorianORCID, Metzkes-Ng JosefineORCID, Miethlinger Thomas, Loeser MarkusORCID, Obst-Huebl LieselotteORCID, Reimold MarvinORCID, Schlenvoigt Hans-PeterORCID, Schoenwaelder Christopher, Schramm UlrichORCID, Siebold Mathias, Treffert FranziskaORCID, Yang Long, Ziegler TimORCID, Zeil KarlORCID
Abstract
AbstractLaser plasma-based particle accelerators attract great interest in fields where conventional accelerators reach limits based on size, cost or beam parameters. Despite the fact that particle in cell simulations have predicted several advantageous ion acceleration schemes, laser accelerators have not yet reached their full potential in producing simultaneous high-radiation doses at high particle energies. The most stringent limitation is the lack of a suitable high-repetition rate target that also provides a high degree of control of the plasma conditions required to access these advanced regimes. Here, we demonstrate that the interaction of petawatt-class laser pulses with a pre-formed micrometer-sized cryogenic hydrogen jet plasma overcomes these limitations enabling tailored density scans from the solid to the underdense regime. Our proof-of-concept experiment demonstrates that the near-critical plasma density profile produces proton energies of up to 80 MeV. Based on hydrodynamic and three-dimensional particle in cell simulations, transition between different acceleration schemes are shown, suggesting enhanced proton acceleration at the relativistic transparency front for the optimal case.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Reference61 articles.
1. Daido, H., Nishiuchi, M. & Pirozhkov, A. S. Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401 (2012). 2. Macchi, A., Borghesi, M. & Passoni, M. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751 (2013). 3. Albert, F. et al. 2020 roadmap on plasma accelerators. N. J. Phys. 23, 031101 (2021). 4. Cowan, T. E. et al. Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801 (2004). 5. Patel, P. et al. Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004 (2003).
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|