Abstract
AbstractAdsorption is essential for many processes on surfaces; therefore, an accurate prediction of adsorption properties is demanded from both fundamental and technological points of view. Particularly, identifying the intrinsic determinants of adsorption energy has been a long-term goal in surface science. Herein, we propose a predictive model for quantitative determination of the adsorption energies of small molecules on metallic materials and oxides, by using a linear combination of the valence and electronegativity of surface atoms and the coordination of active sites, with the corresponding prefactors determined by the valence of adsorbates. This model quantifies the effect of the intrinsic properties of adsorbates and substrates on adsorbate–substrate bonding, derives naturally the well-known adsorption-energy scaling relations, and accounts for the efficiency and limitation of engineering the adsorption energy and reaction energy. All involved parameters are predictable and thus allow the rapid rational design of materials with optimal adsorption properties.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
180 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献