Abstract
AbstractLight-induced halide segregation constrains the photovoltaic performance and stability of wide-bandgap perovskite solar cells and tandem cells. The implementation of an intermixed two-dimensional/three-dimensional heterostructure via solution post-treatment is a typical strategy to improve the efficiency and stability of perovskite solar cells. However, owing to the composition-dependent sensitivity of surface reconstruction, the conventional solution post-treatment is suboptimal for methylammonium-free and cesium/bromide-enriched wide-bandgap PSCs. To address this, we develop a generic three-dimensional to two-dimensional perovskite conversion approach to realize a preferential growth of wider dimensionality (n ≥ 2) atop wide-bandgap perovskite layers (1.78 eV). This technique involves depositing a well-defined MAPbI3 thin layer through a vapor-assisted two-step process, followed by its conversion into a two-dimensional structure. Such a two-dimensional/three-dimensional heterostructure enables suppressed light-induced halide segregation, reduced non-radiative interfacial recombination, and facilitated charge extraction. The wide-bandgap perovskite solar cells demonstrate a champion power conversion efficiency of 19.6% and an open-circuit voltage of 1.32 V. By integrating with the thermal-stable FAPb0.5Sn0.5I3 narrow-bandgap perovskites, our all-perovskite tandem solar cells exhibit a stabilized PCE of 28.1% and retain 90% of the initial performance after 855 hours of continuous 1-sun illumination.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献