Abstract
AbstractNanoporous structures constructed by small molecular components exhibited vigorous materials potentials. While maintianing uniform porosity and functional properties, more applicable processing methods for the solid powders need to be considered and the improvement of binding interactions represents a preferable approach for structural flexibility. Here, by combining ionic interaction and host-guest inclusion, we constructed flexible supramolecular frameworks composing of inorganic polyanionic clusters, cationic organic hosts, and a bridging guest. The formed layer framework structure assemblies grew into nano-fibers and then supramolecular gels, donating highly convenient processability to porous materials. A simple spin-coating generated a new type of liquid separation membranes which showed structural stability for many liquids. The surface properties can be facilely modulated via filling a joystick liquid and then a hydrophilic/hydrophobic liquid into the porous frameworks, providing in-situ consecutive switchings for cutting liquids. This strategy extends the potential of flexible supramolecular frameworks for responsive materials in the laboratory and in industry.
Funder
National Natural Science Foundation of China
the Changbaishan Distinguished Professor Funding of Jilin Province, and the Program for JLU Science and Technology Innovative Research Team
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献