Abstract
AbstractSelf-organized complex structures in nature, e.g., viral capsids, hierarchical biopolymers, and bacterial flagella, offer efficiency, adaptability, robustness, and multi-functionality. Can we program the self-assembly of three-dimensional (3D) complex structures using simple building blocks, and reach similar or higher level of sophistication in engineered materials? Here we present an analytic theory for the self-assembly of polyhedral nanoparticles (NPs) based on their crystal structures in non-Euclidean space. We show that the unavoidable geometrical frustration of these particle shapes, combined with competing attractive and repulsive interparticle interactions, lead to controllable self-assembly of structures of complex order. Applying this theory to tetrahedral NPs, we find high-yield and enantiopure self-assembly of helicoidal ribbons, exhibiting qualitative agreement with experimental observations. We expect that this theory will offer a general framework for the self-assembly of simple polyhedral building blocks into rich complex morphologies with new material capabilities such as tunable optical activity, essential for multiple emerging technologies.
Funder
United States Department of Defense | United States Navy | Office of Naval Research
U.S. Department of Defense
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献