A micro-architectured material as a pressure vessel for green mobility

Author:

Jeong Yoon ChangORCID,Han Seung ChulORCID,Wu Cheng HanORCID,Kang KijuORCID

Abstract

AbstractA shellular is a micro-architectured material, composed of a continuous smooth-curved thin shell in the form of a triply periodic minimal surface. Thanks to the unique geometry, a shellular can support external load by co-planar stresses, unlike microlattice, nanolattice, and mechanical metamaterial. That is, the shellular is the only stretching-dominated material with the highest strength at a density of less than 10−2 g/cc. Therefore, it is expected to support internal pressure, too, by the bi-axial tensile stresses like a balloon. For more than 300 years, spherical and cylindrical vessels have been viable yet compromised options for storing pressurized gases. However, emerging green mobility necessitates a safer and more spatially conformable storage solution for hydrogen than spherical and cylindrical vessels these conventional vessels. In this study, we propose to use the shellular as a pressure vessel. Due to the distinct topological nature – periodic micro-cells constituting the triply periodic minimal surface, the alternative pressure vessel can be tailored individually for spatial requirements while ensuring safety with leak-before-break. For a given constituent material and prescribed pressure, the achievable internal volume-per-total weight of a P-surfaced, cold-stretched, double-chambered shellular vessel with a number of cells more than 15 × 15 × 15 can exceed the practical upper bound of both spherical and cylindrical vessels. For the applications, a thin shell with the large surface area of this micro-architecture is ideal for interfacial transfer of heat or mass between its two sub-volumes under internal pressure.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3