A Machine Learning-Driven Virtual Biopsy System For Kidney Transplant Patients

Author:

Yoo Daniel,Divard Gillian,Raynaud Marc,Cohen Aaron,Mone Tom D.,Rosenthal John Thomas,Bentall Andrew J.ORCID,Stegall Mark D.,Naesens Maarten,Zhang Huanxi,Wang Changxi,Gueguen Juliette,Kamar Nassim,Bouquegneau Antoine,Batal IbrahimORCID,Coley Shana M.,Gill John S.,Oppenheimer Federico,De Sousa-Amorim Erika,Kuypers Dirk R. J.,Durrbach Antoine,Seron Daniel,Rabant Marion,Van Huyen Jean-Paul Duong,Campbell Patricia,Shojai SoroushORCID,Mengel MichaelORCID,Bestard Oriol,Basic-Jukic Nikolina,Jurić Ivana,Boor PeterORCID,Cornell Lynn D.,Alexander Mariam P.ORCID,Toby Coates P.ORCID,Legendre Christophe,Reese Peter P.,Lefaucheur Carmen,Aubert Olivier,Loupy Alexandre

Abstract

AbstractIn kidney transplantation, day-zero biopsies are used to assess organ quality and discriminate between donor-inherited lesions and those acquired post-transplantation. However, many centers do not perform such biopsies since they are invasive, costly and may delay the transplant procedure. We aim to generate a non-invasive virtual biopsy system using routinely collected donor parameters. Using 14,032 day-zero kidney biopsies from 17 international centers, we develop a virtual biopsy system. 11 basic donor parameters are used to predict four Banff kidney lesions: arteriosclerosis, arteriolar hyalinosis, interstitial fibrosis and tubular atrophy, and the percentage of renal sclerotic glomeruli. Six machine learning models are aggregated into an ensemble model. The virtual biopsy system shows good performance in the internal and external validation sets. We confirm the generalizability of the system in various scenarios. This system could assist physicians in assessing organ quality, optimizing allograft allocation together with discriminating between donor derived and acquired lesions post-transplantation.

Publisher

Springer Science and Business Media LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3