A Machine Learning-Driven Virtual Biopsy System For Kidney Transplant Patients
-
Published:2024-01-16
Issue:1
Volume:15
Page:
-
ISSN:2041-1723
-
Container-title:Nature Communications
-
language:en
-
Short-container-title:Nat Commun
Author:
Yoo Daniel, Divard Gillian, Raynaud Marc, Cohen Aaron, Mone Tom D., Rosenthal John Thomas, Bentall Andrew J.ORCID, Stegall Mark D., Naesens Maarten, Zhang Huanxi, Wang Changxi, Gueguen Juliette, Kamar Nassim, Bouquegneau Antoine, Batal IbrahimORCID, Coley Shana M., Gill John S., Oppenheimer Federico, De Sousa-Amorim Erika, Kuypers Dirk R. J., Durrbach Antoine, Seron Daniel, Rabant Marion, Van Huyen Jean-Paul Duong, Campbell Patricia, Shojai SoroushORCID, Mengel MichaelORCID, Bestard Oriol, Basic-Jukic Nikolina, Jurić Ivana, Boor PeterORCID, Cornell Lynn D., Alexander Mariam P.ORCID, Toby Coates P.ORCID, Legendre Christophe, Reese Peter P., Lefaucheur Carmen, Aubert Olivier, Loupy Alexandre
Abstract
AbstractIn kidney transplantation, day-zero biopsies are used to assess organ quality and discriminate between donor-inherited lesions and those acquired post-transplantation. However, many centers do not perform such biopsies since they are invasive, costly and may delay the transplant procedure. We aim to generate a non-invasive virtual biopsy system using routinely collected donor parameters. Using 14,032 day-zero kidney biopsies from 17 international centers, we develop a virtual biopsy system. 11 basic donor parameters are used to predict four Banff kidney lesions: arteriosclerosis, arteriolar hyalinosis, interstitial fibrosis and tubular atrophy, and the percentage of renal sclerotic glomeruli. Six machine learning models are aggregated into an ensemble model. The virtual biopsy system shows good performance in the internal and external validation sets. We confirm the generalizability of the system in various scenarios. This system could assist physicians in assessing organ quality, optimizing allograft allocation together with discriminating between donor derived and acquired lesions post-transplantation.
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. Mallory, T. B. Pathology. N. Engl. J. Med. 236, 438–443 (1947). 2. Barry, J. M. & Murray, J. E. The first human renal transplants. J. Urol. 176, 888–890 (2006). 3. Michon, L. et al. [An attempted kidney transplantation in man: medical and biological aspects]. Presse Med. 61, 1419–1423 (1953). 4. Gaber, L. W. et al. Glomerulosclerosis as a determinant of posttransplant function of older donor renal allografts. Transplantation 60, 334–339 (1995). 5. Naesens, M. Zero-time renal transplant biopsies: a comprehensive review. Transplantation 100, 1425–1439 (2016).
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|