Dual-phase nano-glass-hydrides overcome the strength-ductility trade-off and magnetocaloric bottlenecks of rare earth based amorphous alloys

Author:

Shao Liliang,Luo QiangORCID,Zhang Mingjie,Xue Lin,Cui Jingxian,Yang Qianzi,Ke HaiboORCID,Zhang Yao,Shen BaolongORCID,Wang WeihuaORCID

Abstract

AbstractMetal-hydrogen systems have attracted intense interest for diverse energy-related applications. However, metals usually reduce their ductility after hydrogenation. Here, we show that hydrogen can take the form of nano-sized ordered hydrides (NOH) homogeneously dispersed in a stable glassy shell, leading to remarkable enhancement in both strength and ductility. The yield strength is enhanced by 44% and the plastic strain is substantially improved from almost zero to over 70%, which is attributed to the created NOH and their interplay with the glassy shell. Moreover, the hydride-glass composite GdCoAlH possesses a giant magnetic entropy change (−ΔSM) of 18.7 J kg−1K−1 under a field change of 5 T, which is 105.5% larger than the hydrogen-free sample and is the largest value among amorphous alloys and related composites. The prominent ΔSM-ductility combination overcomes the bottlenecks of amorphous alloys as magnetic refrigerants. These results provide a promising strategy for property breakthrough of structural-functional alloys.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3