Trajectories of freshwater microbial genomics and greenhouse gas saturation upon glacial retreat

Author:

Wei Jing,Fontaine Laurent,Valiente NicolasORCID,Dörsch Peter,Hessen Dag O.,Eiler AlexanderORCID

Abstract

AbstractDue to climate warming, ice sheets around the world are losing mass, contributing to changes across terrestrial landscapes on decadal time spans. However, landscape repercussions on climate are poorly constrained mostly due to limited knowledge on microbial responses to deglaciation. Here, we reveal the genomic succession from chemolithotrophy to photo- and heterotrophy and increases in methane supersaturation in freshwater lakes upon glacial retreat. Arctic lakes at Svalbard also revealed strong microbial signatures form nutrient fertilization by birds. Although methanotrophs were present and increased along lake chronosequences, methane consumption rates were low even in supersaturated systems. Nitrous oxide oversaturation and genomic information suggest active nitrogen cycling across the entire deglaciated landscape, and in the high Arctic, increasing bird populations serve as major modulators at many sites. Our findings show diverse microbial succession patterns, and trajectories in carbon and nitrogen cycle processes representing a positive feedback loop of deglaciation on climate warming.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference119 articles.

1. Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

2. Shepherd, A. et al. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579, 233–239 (2020).

3. Vaughan, D. G. et al. Observations: Cryosphere. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2013).

4. Holm, T. M. et al. Rapid physicochemical changes in the high Arctic Lake Kongressvatn caused by recent climate change. Aquat. Sci. 74, 385–395 (2012).

5. Wang, Y.-R., Hessen, D. O., Samset, B. H. & Stordal, F. Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data. Remote Sens. Environ. 280, 113181 (2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3