Abstract
AbstractLithium metal batteries (LMBs) with inorganic solid-state electrolytes are considered promising secondary battery systems because of their higher energy content than their Li-ion counterpart. However, the LMB performance remains unsatisfactory for commercialization, primarily owing to the inability of the inorganic solid-state electrolytes to hinder lithium dendrite propagation. Here, using an Ag-coated Li6.4La3Zr1.7Ta0.3O12 (LLZTO) inorganic solid electrolyte in combination with a silver-carbon interlayer, we demonstrate the production of stable interfacially engineered lab-scale LMBs. Via experimental measurements and computational modelling, we prove that the interlayers strategy effectively regulates lithium stripping/plating and prevents dendrite penetration in the solid-state electrolyte pellet. By coupling the surface-engineered LLZTO with a lithium metal negative electrode, a high-voltage positive electrode with an ionic liquid-based liquid electrolyte solution in pouch cell configuration, we report 800 cycles at 1.6 mA/cm2 and 25 °C without applying external pressure. This cell enables an initial discharge capacity of about 3 mAh/cm2 and a discharge capacity retention of about 85%.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献