Collaborative management of the Grand Ethiopian Renaissance Dam increases economic benefits and resilience

Author:

Basheer MohammedORCID,Nechifor VictorORCID,Calzadilla AlvaroORCID,Siddig KhalidORCID,Etichia Mikiyas,Whittington Dale,Hulme David,Harou Julien J.

Abstract

AbstractThe landscape of water infrastructure in the Nile Basin is changing with the construction of the Grand Ethiopian Renaissance Dam. Although this dam could improve electricity supply in Ethiopia and its neighbors, there is a lack of consensus between Ethiopia, Sudan, and Egypt on the dam operation. We introduce a new modeling framework that simulates the Nile River System and Egypt’s macroeconomy, with dynamic feedbacks between the river system and the macroeconomy. Because the two systems “coevolve” throughout multi-year simulations, we term this a “coevolutionary” modeling framework. The framework is used to demonstrate that a coordinated operating strategy could allow the Grand Ethiopian Renaissance Dam to help meet water demands in Egypt during periods of water scarcity and increase hydropower generation and storage in Ethiopia during high flows. Here we show the hydrological and macroeconomic performance of this coordinated strategy compared to a strategy that resembles a recent draft proposal for the operation of the dam discussed in Washington DC.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3