Abstract
AbstractSingle-walled carbon nanotubes (SWCNTs)-based thermoelectric materials, valued for their flexibility, lightweight, and cost-effectiveness, show promise for wearable thermoelectric devices. However, their thermoelectric performance requires significant enhancement for practical applications. To achieve this goal, in this work, we introduce rational “triple treatments” to improve the overall performance of flexible SWCNT-based films, achieving a high power factor of 20.29 µW cm−1 K−2 at room temperature. Ultrasonic dispersion enhances the conductivity, NaBH4 treatment reduces defects and enhances the Seebeck coefficient, and cold pressing significantly densifies the SWCNT films while preserving the high Seebeck coefficient. Also, bending tests confirm structural stability and exceptional flexibility, and a six-legged flexible device demonstrates a maximum power density of 2996 μW cm−2 at a 40 K temperature difference, showing great application potential. This advancement positions SWCNT films as promising flexible thermoelectric materials, providing insights into high-performance carbon-based thermoelectrics.
Funder
Department of Education and Training | Australian Research Council
HBIS-UQ Innovation Centre for Sustainable Steel Project & the QUT Capacity Building Professor Program
National Natural Science Foundation of China
The State Key Laboratory of Materials-Oriented Chemical Engineering (SKL-MCE-23A04), and the Jiangsu Specially-Appointed Professor Program
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献