Abstract
AbstractOptical cryptography manifests itself a powerful platform for information security, which involves encrypting secret images into visual patterns. Recently, encryption schemes demonstrated on metasurface platform have revolutionized optical cryptography, as the versatile design concept allows for unrestrained creativity. Despite rapid progresses, most efforts focus on the functionalities of cryptography rather than addressing performance issues, such as deep security, information capacity, and reconstruction quality. Here, we develop an optical encryption scheme by integrating visual cryptography with metasurface-assisted pattern masking, referred to as Stokes meta-hologram. Based on spatially structured polarization pattern masking, Stokes meta-hologram allows multichannel vectorial encryption to mask multiple secret images into unrecognizable visual patterns, and retrieve them following Stokes vector analysis. Further, an asymmetric encryption scheme based on Stokes vector rotation transformation is proposed to settle the inherent problem of the need to share the key in symmetric encryption. Our results show that Stokes meta-hologram can achieve optical cryptography with effectively improved security, and thereby paves a promising pathway toward optical and quantum security, optical communications, and anticounterfeiting.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献