Weyl spin-momentum locking in a chiral topological semimetal
-
Published:2024-05-02
Issue:1
Volume:15
Page:
-
ISSN:2041-1723
-
Container-title:Nature Communications
-
language:en
-
Short-container-title:Nat Commun
Author:
Krieger Jonas A.ORCID, Stolz Samuel, Robredo Iñigo, Manna KaustuvORCID, McFarlane Emily C.ORCID, Date MihirORCID, Pal Banabir, Yang Jiabao, B. Guedes Eduardo, Dil J. HugoORCID, Polley Craig M., Leandersson Mats, Shekhar ChandraORCID, Borrmann Horst, Yang Qun, Lin Mao, Strocov Vladimir N.ORCID, Caputo Marco, Watson Matthew D.ORCID, Kim Timur K.ORCID, Cacho CephiseORCID, Mazzola FedericoORCID, Fujii JunORCID, Vobornik IvanaORCID, Parkin Stuart S. P.ORCID, Bradlyn BarryORCID, Felser ClaudiaORCID, Vergniory Maia G.ORCID, Schröter Niels B. M.ORCID
Abstract
AbstractSpin-orbit coupling in noncentrosymmetric crystals leads to spin-momentum locking – a directional relationship between an electron’s spin angular momentum and its linear momentum. Isotropic orthogonal Rashba spin-momentum locking has been studied for decades, while its counterpart, isotropic parallel Weyl spin-momentum locking has remained elusive in experiments. Theory predicts that Weyl spin-momentum locking can only be realized in structurally chiral cubic crystals in the vicinity of Kramers-Weyl or multifold fermions. Here, we use spin- and angle-resolved photoemission spectroscopy to evidence Weyl spin-momentum locking of multifold fermions in the chiral topological semimetal PtGa. We find that the electron spin of the Fermi arc surface states is orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion at the Γ point, which is consistent with Weyl spin-momentum locking of the latter. The direct measurement of the bulk spin texture of the multifold fermion at the R point also displays Weyl spin-momentum locking. The discovery of Weyl spin-momentum locking may lead to energy-efficient memory devices and Josephson diodes based on chiral topological semimetals.
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. Armitage, N., Mele, E. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018). 2. Naaman, R. & Waldeck, D. H. Spintronics and Chirality: Spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015). 3. Liang, Y. et al. Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes. Nat. Commun. 13, 3356 (2022). 4. Liu, Y., Xiao, J., Koo, J. & Yan, B. Chirality-driven topological electronic structure of DNA-like materials. Nat. Mater. 20, 638–644 (2021). 5. Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78 (1984).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|