A machine-learning approach to human ex vivo lung perfusion predicts transplantation outcomes and promotes organ utilization

Author:

Sage Andrew T.ORCID,Donahoe Laura L.,Shamandy Alaa A.,Mousavi S. HosseinORCID,Chao Bonnie T.,Zhou Xuanzi,Valero Jerome,Balachandran Sharaniyaa,Ali Aadil,Martinu Tereza,Tomlinson George,Del Sorbo Lorenzo,Yeung Jonathan C.ORCID,Liu Mingyao,Cypel MarceloORCID,Wang Bo,Keshavjee ShafORCID

Abstract

AbstractEx vivo lung perfusion (EVLP) is a data-intensive platform used for the assessment of isolated lungs outside the body for transplantation; however, the integration of artificial intelligence to rapidly interpret the large constellation of clinical data generated during ex vivo assessment remains an unmet need. We developed a machine-learning model, termed InsighTx, to predict post-transplant outcomes using n = 725 EVLP cases. InsighTx model AUROC (area under the receiver operating characteristic curve) was 79 ± 3%, 75 ± 4%, and 85 ± 3% in training and independent test datasets, respectively. Excellent performance was observed in predicting unsuitable lungs for transplantation (AUROC: 90 ± 4%) and transplants with good outcomes (AUROC: 80 ± 4%). In a retrospective and blinded implementation study by EVLP specialists at our institution, InsighTx increased the likelihood of transplanting suitable donor lungs [odds ratio=13; 95% CI:4-45] and decreased the likelihood of transplanting unsuitable donor lungs [odds ratio=0.4; 95%CI:0.16–0.98]. Herein, we provide strong rationale for the adoption of machine-learning algorithms to optimize EVLP assessments and show that InsighTx could potentially lead to a safe increase in transplantation rates.

Funder

Mitacs

Canada Foundation for Innovation

Genome Canada and Ontario Genomics

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applications of transcriptomics in ischemia reperfusion research in lung transplantation;The Journal of Heart and Lung Transplantation;2024-09

2. Transplantation, bridging, and support technologies in pulmonary hypertension;European Respiratory Journal;2024-08-29

3. Proceedings of the 2024 Transplant AI Symposium;Frontiers in Transplantation;2024-08-29

4. VCA supercooling in a swine partial hindlimb model;Scientific Reports;2024-06-01

5. Noninflammatory Causes of Pulmonary Edema During Ex Vivo Lung Perfusion;Annals of Thoracic Surgery Short Reports;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3