A stress-induced source of phonon bursts and quasiparticle poisoning

Author:

Anthony-Petersen Robin,Biekert Andreas,Bunker Raymond,Chang Clarence L.,Chang Yen-Yung,Chaplinsky LukeORCID,Fascione Eleanor,Fink Caleb W.,Garcia-Sciveres Maurice,Germond Richard,Guo WeiORCID,Hertel Scott A.,Hong ZiqingORCID,Kurinsky Noah,Li Xinran,Lin Junsong,Lisovenko Marharyta,Mahapatra RupakORCID,Mayer Adam,McKinsey Daniel N.,Mehrotra Siddhant,Mirabolfathi Nader,Neblosky Brian,Page William A.,Patel Pratyush K.ORCID,Penning Bjoern,Pinckney H. Douglas,Platt Mark,Pyle Matt,Reed MaggieORCID,Romani Roger K.ORCID,Santana Queiroz Hadley,Sadoulet Bernard,Serfass Bruno,Smith Ryan,Sorensen Peter,Suerfu Burkhant,Suzuki Aritoki,Underwood Ryan,Velan VetriORCID,Wang Gensheng,Wang YueORCID,Watkins Samuel L.ORCID,Williams Michael R.,Yefremenko Volodymyr,Zhang Jianjie

Abstract

AbstractThe performance of superconducting qubits is degraded by a poorly characterized set of energy sources breaking the Cooper pairs responsible for superconductivity, creating a condition often called “quasiparticle poisoning”. Both superconducting qubits and low threshold dark matter calorimeters have observed excess bursts of quasiparticles or phonons that decrease in rate with time. Here, we show that a silicon crystal glued to its holder exhibits a rate of low-energy phonon events that is more than two orders of magnitude larger than in a functionally identical crystal suspended from its holder in a low-stress state. The excess phonon event rate in the glued crystal decreases with time since cooldown, consistent with a source of phonon bursts which contributes to quasiparticle poisoning in quantum circuits and the low-energy events observed in cryogenic calorimeters. We argue that relaxation of thermally induced stress between the glue and crystal is the source of these events.

Funder

DOE | LDRD | Lawrence Berkeley National Laboratory

DOE | LDRD | Pacific Northwest National Laboratory

DOE | SC | High Energy Physics

National High Magnetic Field Laboratory

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3