Abstract
AbstractAdvancements in quantum system lifetimes and control have enabled the creation of increasingly complex quantum states, such as those on multiple bosonic cavity modes. When characterizing these states, traditional tomography scales exponentially with the number of modes in both computational and experimental measurement requirement, which becomes prohibitive as the system size increases. Here, we implement a state reconstruction method whose sampling requirement instead scales polynomially with system size, and thus mode number, for states that can be represented within such a polynomial subspace. We demonstrate this improved scaling with Wigner tomography of multimode entangled W states of up to 4 modes on a 3D circuit quantum electrodynamics (cQED) system. This approach performs similarly in efficiency to existing matrix inversion methods for 2 modes, and demonstrates a noticeable improvement for 3 and 4 modes, with even greater theoretical gains at higher mode numbers.
Funder
United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office
United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research
David and Lucile Packard Foundation
National Science Foundation
United States Department of Defense | United States Air Force | AFMC | Air Force Research Laboratory
Publisher
Springer Science and Business Media LLC