Structure and elasticity of CaC2O5 suggests carbonate contribution to the seismic anomalies of Earth’s mantle

Author:

Wang HanyuORCID,Liu LeiORCID,Gao Zihan,Yang Longxing,Naren Gerile,Mao ShideORCID

Abstract

AbstractKnowledge of carbonate compounds under high pressure inside Earth is key to understanding the internal structure of the Earth, the deep carbon cycle and major geological events. Here we use first-principles simulations to calculate the structure and elasticity of CaC2O5-minerals with different symmetries under high pressure. Our calculations show that CaC2O5-minerals represent a group of low-density low-seismic-wave velocity mantle minerals. Changes in seismic wave velocity caused by the phase transformation of CaC2O5-Cc to CaC2O5-I$$\bar{4}$$ 4 ¯ 2d (CaC2O5-C2-l) agree with wave velocity discontinuity at a depth of 660 km in the mantle transition zone. Moreover, when CaC2O5-Fdd2 transforms into CaC2O5-C2 under 70 GPa, its shear wave velocity decreases by 7.4%, and its density increases by 5.8%, which is consistent with the characteristics of large low-shear-velocity provinces (LLSVPs). Furthermore, the shear wave velocity of CaC2O5-I$$\bar{4}$$ 4 ¯ 2d is very similar to that of cubic Ca-perovskite, which is one of the main constituents of the previously detected LLSVPs. Therefore, we propose that CaC2O5 and its high-pressure polymorphs may be a main component of LLSVPs.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3