Down-selection of biomolecules to assemble “reverse micelle” with perovskites

Author:

Wu Haodong,Hou YuchenORCID,Yoon Jungjin,Knoepfel Abbey Marie,Zheng Luyao,Yang Dong,Wang Ke,Qian Jin,Priya ShashankORCID,Wang KaiORCID

Abstract

AbstractBiological molecule-semiconductor interfacing has triggered numerous opportunities in applied physics such as bio-assisted data storage and computation, brain-computer interface, and advanced distributed bio-sensing. The introduction of electronics into biological embodiment is being quickly developed as it has great potential in providing adaptivity and improving functionality. Reciprocally, introducing biomaterials into semiconductors to manifest bio-mimetic functionality is impactful in triggering new enhanced mechanisms. In this study, we utilize the vulnerable perovskite semiconductors as a platform to understand if certain types of biomolecules can regulate the lattice and endow a unique mechanism for stabilizing the metastable perovskite lattice. Three tiers of biomolecules have been systematically tested and the results reveal a fundamental mechanism for the formation of a “reverse-micelle” structure. Systematic exploration of a large set of biomolecules led to the discovery of guiding principle for down-selection of biomolecules which extends the classic emulsion theory to this hybrid systems. Results demonstrate that by introducing biomaterials into semiconductors, natural phenomena typically observed in biological systems can also be incorporated into semiconducting crystals, providing a new perspective to engineer existing synthetic materials.

Funder

DOE | Office of Energy Efficiency & Renewable Energy | Solar Energy Technologies Office

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3