Abstract
AbstractThe airway epithelium serves as the interface between the host and external environment. In many chronic lung diseases, the airway is the site of substantial remodeling after injury. While, idiopathic pulmonary fibrosis (IPF) has traditionally been considered a disease of the alveolus and lung matrix, the dominant environmental (cigarette smoking) and genetic (gain of function MUC5B promoter variant) risk factor primarily affect the distal airway epithelium. Moreover, airway-specific pathogenic features of IPF include bronchiolization of the distal airspace with abnormal airway cell-types and honeycomb cystic terminal airway-like structures with concurrent loss of terminal bronchioles in regions of minimal fibrosis. However, the pathogenic role of the airway epithelium in IPF is unknown. Combining biophysical, genetic, and signaling analyses of primary airway epithelial cells, we demonstrate that healthy and IPF airway epithelia are biophysically distinct, identifying pathologic activation of the ERBB-YAP axis as a specific and modifiable driver of prolongation of the unjammed-to-jammed transition in IPF epithelia. Furthermore, we demonstrate that this biophysical state and signaling axis correlates with epithelial-driven activation of the underlying mesenchyme. Our data illustrate the active mechanisms regulating airway epithelial-driven fibrosis and identify targets to modulate disease progression.
Funder
U.S. Department of Health & Human Services | NIH | National Institute on Aging
U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute
U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences
National Science Foundation
United States Department of Defense | U.S. Army
U.S. Department of Defense
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献