Kagomerization of transition metal monolayers induced by two-dimensional hexagonal boron nitride

Author:

Zhou HangyuORCID,dos Santos Dias Manuel,Zhang Youguang,Zhao WeishengORCID,Lounis SamirORCID

Abstract

AbstractThe kagome lattice is an exciting solid state physics platform for the emergence of nontrivial quantum states driven by electronic correlations: topological effects, unconventional superconductivity, charge and spin density waves, and unusual magnetic states such as quantum spin liquids. While kagome lattices have been realized in complex multi-atomic bulk compounds, here we demonstrate from first-principles a process that we dub kagomerization, in which we fabricate a two-dimensional kagome lattice in monolayers of transition metals utilizing an hexagonal boron nitride (h-BN) overlayer. Surprisingly, h-BN induces a large rearrangement of the transition metal atoms supported on a fcc(111) heavy-metal surface. This reconstruction is found to be rather generic for this type of heterostructures and has a profound impact on the underlying magnetic properties, ultimately stabilizing various topological magnetic solitons such as skyrmions and bimerons. Our findings call for a reconsideration of h-BN as merely a passive capping layer, showing its potential for not only reconstructing the atomic structure of the underlying material, e.g. through the kagomerization of magnetic films, but also enabling electronic and magnetic phases that are highly sought for the next generation of device technologies.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3