1. Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding deep learning requires rethinking generalization. In International Conference on Learning Representations (ICLR) (Toulon, France, 2017).
2. Rosasco, L. & Villa, S. Learning with incremental iterative regularization. In Advances in Neural Information Processing Systems, 1630–1638 (2015).
3. Engl, H., Hanke, M. & Neubauer, A. Regularization of Inverse Problems (Kluwer Academic Publishers, 2000).
4. Douglas, S. C., Amari, S. & Kung, S. Y. On gradient adaptation with unit-norm constraints. IEEE Transact. Signal Process. 48(June), 1843–1847 (2000).
5. Banburski, A. et al. Theory of deep learning III: dynamics and generalization in deep networks. CBMM Memo No. 090 (2019).