Lanthanide-regulating Ru-O covalency optimizes acidic oxygen evolution electrocatalysis

Author:

Li Lu,Zhang Gengwei,Zhou Chenhui,Lv Fan,Tan Yingjun,Han Ying,Luo Heng,Wang Dawei,Liu YouxingORCID,Shang ChangshuaiORCID,Zeng LingyouORCID,Huang Qizheng,Zeng Ruijin,Ye Na,Luo Mingchuan,Guo ShaojunORCID

Abstract

AbstractPrecisely modulating the Ru-O covalency in RuOx for enhanced stability in proton exchange membrane water electrolysis is highly desired. However, transition metals with d-valence electrons, which were doped into or alloyed with RuOx, are inherently susceptible to the influence of coordination environment, making it challenging to modulate the Ru-O covalency in a precise and continuous manner. Here, we first deduce that the introduction of lanthanide with gradually changing electronic configurations can continuously modulate the Ru-O covalency owing to the shielding effect of 5s/5p orbitals. Theoretical calculations confirm that the durability of Ln-RuOx following a volcanic trend as a function of Ru-O covalency. Among various Ln-RuOx, Er-RuOx is identified as the optimal catalyst and possesses a stability 35.5 times higher than that of RuO2. Particularly, the Er-RuOx-based device requires only 1.837 V to reach 3 A cm−2 and shows a long-term stability at 500 mA cm−2 for 100 h with a degradation rate of mere 37 μV h−1.

Publisher

Springer Science and Business Media LLC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3