Abstract
AbstractExternal cycling regenerating nitrogen oxides (NOx ≡ NO + NO2) from their oxidative reservoir, NOz, is proposed to reshape the temporal–spatial distribution of NOx and consequently hydroxyl radical (OH), the most important oxidant in the atmosphere. Here we verify the in situ external cycling of NOx in various environments with nitrous acid (HONO) as an intermediate based on synthesized field evidence collected onboard aircraft platform at daytime. External cycling helps to reconcile stubborn underestimation on observed ratios of HONO/NO2 and NO2/NOz by current chemical model schemes and rationalize atypical diurnal concentration profiles of HONO and NO2 lacking noontime valleys specially observed in low-NOx atmospheres. Perturbation on the budget of HONO and NOx by external cycling is also found to increase as NOx concentration decreases. Consequently, model underestimation of OH observations by up to 41% in low NOx atmospheres is attributed to the omission of external cycling in models.
Funder
National Natural Science Foundation of China
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献