Stabilizing atomic Ru species in conjugated sp2 carbon-linked covalent organic framework for acidic water oxidation

Author:

Jia Hongnan,Yao Na,Jin Yiming,Wu Liqing,Zhu Juan,Luo WeiORCID

Abstract

AbstractSuppressing the kinetically favorable lattice oxygen oxidation mechanism pathway and triggering the adsorbate evolution mechanism pathway at the expense of activity are the state-of-the-art strategies for Ru-based electrocatalysts toward acidic water oxidation. Herein, atomically dispersed Ru species are anchored into an acidic stable vinyl-linked 2D covalent organic framework with unique crossed π-conjugation, termed as COF-205-Ru. The crossed π-conjugated structure of COF-205-Ru not only suppresses the dissolution of Ru through strong Ru-N motifs, but also reduces the oxidation state of Ru by multiple π-conjugations, thereby activating the oxygen coordinated to Ru and stabilizing the oxygen vacancies during oxygen evolution process. Experimental results including X-ray absorption spectroscopy, in situ Raman spectroscopy, in situ powder X-ray diffraction patterns, and theoretical calculations unveil the activated oxygen with elevated energy level of O 2p band, decreased oxygen vacancy formation energy, promoted electrochemical stability, and significantly reduced energy barrier of potential determining step for acidic water oxidation. Consequently, the obtained COF-205-Ru displays a high mass activity with 2659.3 A g−1, which is 32-fold higher than the commercial RuO2, and retains long-term durability of over 280 h. This work provides a strategy to simultaneously promote the stability and activity of Ru-based catalysts for acidic water oxidation.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3