Dense dislocations enable high-performance PbSe thermoelectric at low-medium temperatures

Author:

Xu Liqing,Xiao YuORCID,Wang SiningORCID,Cui BoORCID,Wu Di,Ding Xiangdong,Zhao Li-DongORCID

Abstract

AbstractPbSe-based thermoelectric materials exhibit promising ZT values at medium temperature, but its near-room-temperature thermoelectric properties are overlooked, thus restricting its average ZT (ZTave) value at low-medium temperatures. Here, a high ZTave of 0.90 at low temperature (300–573 K) is reported in n-type PbSe-based thermoelectric material (Pb1.02Se0.72Te0.20S0.08−0.3%Cu), resulting in a large ZTave of 0.96 at low-medium temperatures (300–773 K). This high thermoelectric performance stems from its ultralow lattice thermal conductivity caused by dense dislocations through heavy Te/S alloying and Cu interstitial doping. The dislocation density evaluated by modified Williamson-Hall method reaches up to 5.4 × 1016 m−2 in Pb1.02Se0.72Te0.20S0.08−0.3%Cu. Moreover, the microstructure observation further uncloses two kinds of dislocations, namely screw and edge dislocations, with several to hundreds of nanometers scale in length. These dislocations in lattice can strongly intensify phonon scattering to minimize the lattice thermal conductivity and simultaneously maintain high carrier transport. As a result, with the reduced lattice thermal conductivity and optimized power factor in Pb1.02Se0.72Te0.20S0.08−0.3%Cu, its near-room-temperature thermoelectric performance is largely enhanced and exceeds previous PbSe-based thermoelectric materials.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference47 articles.

1. Qin, B. et al. Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments. Science 373, 556–561 (2021).

2. Tang, X., Li, Z., Liu, W., Zhang, Q. & Uher, C. A comprehensive review on Bi2Te3‐based thin films: thermoelectrics and beyond. Interdiscip. Mater. 1, 88–115 (2022).

3. Fan, Y. & Tan, G. Ferroelectric engineering advances thermoelectric materials. Mater. Lab. 1, 220008 (2022).

4. Zhang, F., Wu, D. & He, J. The roles of grain boundaries in thermoelectric transports. Mater. Lab. 1, 220012 (2022).

5. Xiao, Y. Routes to High-ranged Thermoelectric Performance. Mater. Lab. 1, 220025 (2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3