Abstract
AbstractCeramic aerogels are attractive for many applications due to their ultralow density, high porosity, and multifunctionality but are limited by the typical trade-off relationship between mechanical properties and thermal stability when used in extreme environments. In this work, we design and synthesize ceramic nanofibrous aerogels with three-dimensional (3D) interwoven crimped-nanofibre structures that endow the aerogels with superior mechanical performances and high thermal stability. These ceramic aerogels are synthesized by a direct and facile route, 3D reaction electrospinning. They display robust structural stability with structure-derived mechanical ultra-stretchability up to 100% tensile strain and superior restoring capacity up to 40% tensile strain, 95% bending strain and 60% compressive strain, high thermal stability from −196 to 1400 °C, repeatable stretchability at working temperatures up to 1300 °C, and a low thermal conductivity of 0.0228 W m−1 K−1 in air. This work would enable the innovative design of high-performance ceramic aerogels for various applications.
Funder
Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University
Central University Cross-disciplinary Key Program
National Natural Science Foundation of China
International Cooperation Fund of Science and Technology Commission of Shanghai Municipalit
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献