Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers

Author:

Zhong Yufei,Causa’ Martina,Moore Gareth John,Krauspe Philipp,Xiao Bo,Günther Florian,Kublitski JonasORCID,Shivhare Rishi,Benduhn JohannesORCID,BarOr Eyal,Mukherjee SubhrangsuORCID,Yallum Kaila M.,Réhault Julien,Mannsfeld Stefan C. B.ORCID,Neher DieterORCID,Richter Lee J.,DeLongchamp Dean M.,Ortmann FrankORCID,Vandewal KoenORCID,Zhou ErjunORCID,Banerji Natalie

Abstract

AbstractOrganic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff.

Funder

Universität Bern

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

National Natural Science Foundation of China

Fundação de Amparo à Pesquisa do Estado de São Paulo

Deutscher Akademischer Austauschdienst

German Federal Ministry for Education and Research

U.S. Department of Energy

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3