Intracontinental deformation of the Tianshan Orogen in response to India-Asia collision

Author:

Li Wei,Chen YunORCID,Yuan XiaohuiORCID,Xiao WenjiaoORCID,Windley Brian F.

Abstract

AbstractHow the continental lithosphere deforms far away from plate boundaries has been long debated. The Tianshan is a type-example of ongoing lithospheric deformation in an intracontinental setting. It formed during the Paleozoic accretion of the Altaids and was rejuvenated in the Cenozoic, which might be a far-field response to the India-Asia collision. Here we present seismic images of the lithosphere across the central Tianshan, which were constructed from receiver functions and Rayleigh wave dispersions along a N–S-trending linear seismic array. We observe an extensively deformed lithosphere in the Tianshan with inherited, structurally controlled brittle deformation in the shallow crust and plastic deformation near the Moho. We find that earlier multiple accretionary structures were preserved in the crust, which was deformed by pure-shear shortening in the south and thick-skinned tectonics in the north but was limitedly underthrusted by surrounding blocks. A balanced cross-section of Moho discontinuities supports the concept that intracontinental deformation in the Tianshan intensified synchronously with the direct contact between the underthrusting Indian slab and the Tarim Craton in the Late Miocene (~10 Ma). These findings provide a robust and unified seismic model for the Tianshan Orogen, and confirm that effective delivery of the India-Asia collision stress induced the rejuvenation of this intracontinental orogen.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Sino-German (CSC-DAAD) Postdoc Scholarship

Chinese Academy of Sciences Key Project

Ministry of Science and Technology of the People's Republic of China

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3