Abstract
AbstractComputer-generated holograms are crucial for a wide range of applications such as 3D displays, information encryption, data storage, and opto-electronic computing. Orbital angular momentum (OAM), as a new degree of freedom with infinite orthogonal states, has been employed to expand the hologram bandwidth. However, in order to reduce strong multiplexing crosstalk, OAM holography suffers from a fundamental sampling criterion that the image sampling distance should be no less than the diameter of largest addressable OAM mode, which severely hinders the increase in resolution and capacity. Here we establish a comprehensive model on multiplexing crosstalk in OAM holography, propose a pseudo incoherent approach that is almost crosstalk-free, and demonstrate an analogous coherent solution by temporal multiplexing, which dramatically eliminates the crosstalk and largely relaxes the constraint upon sampling condition of OAM holography, exhibiting a remarkable resolution enhancement by several times, far beyond the conventional resolution limit of OAM holography, as well as a large scaling of OAM multiplexing capacity at fixed resolution. Our method enables OAM-multiplexed holographic reconstruction with high quality, high resolution, and high capacity, offering an efficient and practical route towards the future high-performance holographic systems.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献