The quantum geometric origin of capacitance in insulators

Author:

Komissarov Ilia,Holder TobiasORCID,Queiroz RaquelORCID

Abstract

AbstractIn band insulators, without a Fermi surface, adiabatic transport can exist due to the geometry of the ground state wavefunction. Here we show that for systems driven at a small but finite frequency ω, transport likewise depends sensitively on quantum geometry. We make this statement precise by expressing the Kubo formula for conductivity as the variation of the time-dependent polarization with respect to the applied field. We find that at linear order in frequency, the longitudinal conductivity results from an intrinsic capacitance determined by the ratio of the quantum metric and the spectral gap, establishing a fundamental link between the dielectric response and the quantum metric of insulators. We demonstrate that quantum geometry is responsible for the electronic contribution to the dielectric constant in a wide range of insulators, including the free electron gas in a quantizing magnetic field, for which we show the capacitance is quantized. We also study gapped bands of hBN-aligned twisted bilayer graphene and obstructed atomic insulators such as diamond. In the latter, we find its abnormally large refractive index to have a topological origin.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3