Abstract
AbstractThe evolution of Sr2IrO4 upon carrier doping has been a subject of intense interest, due to its similarities to the parent cuprates, yet the intrinsic behaviour of Sr2IrO4 upon hole doping remains enigmatic. Here, we synthesize and investigate hole-doped Sr2−xKxIrO4 utilizing a combination of reactive oxide molecular-beam epitaxy, substitutional diffusion and in-situ angle-resolved photoemission spectroscopy. Upon hole doping, we observe the formation of a coherent, two-band Fermi surface, consisting of both hole pockets centred at (π, 0) and electron pockets centred at (π/2, π/2). In particular, the strong similarities between the Fermi surface topology and quasiparticle band structure of hole- and electron-doped Sr2IrO4 are striking given the different internal structure of doped electrons versus holes.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference43 articles.
1. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).
2. Wang, F. & Senthil, T. Twisted hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity. Phys. Rev. Lett. 106, 136402 (2011).
3. Rau, J. G., Lee, E. K.-H. & Kee, H.-Y. Spin-orbit physics giving rise to novel phases in correlated systems: iridates and related materials. Annu. Rev. Condens. Matter Phys. 7, 195–221 (2016).
4. Kim, Y. K. et al. Fermi arcs in a doped pseudospin-1/2 Heisenberg antiferromagnet. Science 345, 187–190 (2014).
5. Kim, Y. K., Sung, N. H., Denlinger, J. D. & Kim B. J. Observation of a d-wave gap in electron doped Sr2IrO4. Nat. Phys. 12, 1–6 (2015).
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献