Biomimetic synergistic effect of redox site and Lewis acid for construction of efficient artificial enzyme

Author:

Si Haibin,Du Dexin,Jiao Chengcheng,Sun Yan,Li Lu,Tang BoORCID

Abstract

AbstractIn enzymatic catalysis, the redox site and Lewis acid are the two main roles played by metal to assist amino acids. However, the reported enzyme mimics only focus on the redox-active metal as redox site, while the redox-inert metal as Lewis acid has, to the best of our knowledge, not been studied, presenting a bottleneck of enzyme mimics construction. Based on this, a series of highly efficient MxV2O5·nH2O peroxidase mimics with vanadium as redox site and alkaline-earth metal ion (M2+) as Lewis acid are reported. Experimental results and theoretical calculations indicate the peroxidase-mimicking activity of MxV2O5·nH2O show a periodic change with the Lewis acidity (ion potential) of M2+, revealing the mechanism of redox-inert M2+ regulating electron transfer of V-O through non-covalent polarization and thus promoting H2O2 adsorbate dissociation. The biomimetic synergetic effect of redox site and Lewis acid is expected to provide an inspiration for design of enzyme mimics.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3