Abstract
AbstractLiving matter has the ability to perceive multiple stimuli and respond accordingly. However, the integration of multiple stimuli-responsiveness in artificial materials usually causes mutual interference, which makes artificial materials work improperly. Herein, we design composite gels with organic‒inorganic semi-interpenetrating network structures, which are orthogonally responsive to light and magnetic fields. The composite gels are prepared by the co-assembly of a photoswitchable organogelator (Azo-Ch) and superparamagnetic inorganic nanoparticles (Fe3O4@SiO2). Azo-Ch assembles into an organogel network, which shows photoinduced reversible sol-gel transitions. In gel or sol state, Fe3O4@SiO2nanoparticles reversibly form photonic nanochains via magnetic control. Light and magnetic fields can orthogonally control the composite gel because Azo-Ch and Fe3O4@SiO2form a unique semi-interpenetrating network, which allows them to work independently. The orthogonal photo- and magnetic-responsiveness enables the fabrication of smart windows, anti-counterfeiting labels, and reconfigurable materials using the composite gel. Our work presents a method to design orthogonally stimuli-responsive materials.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Anhui Province
Recruitment Program of Global Experts
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献