Abstract
AbstractEnergy transferred via thermal radiation between two surfaces separated by nanometer distances can be much larger than the blackbody limit. However, realizing a scalable platform that utilizes this near-field energy exchange mechanism to generate electricity remains a challenge. Here, we present a fully integrated, reconfigurable and scalable platform operating in the near-field regime that performs controlled heat extraction and energy recycling. Our platform relies on an integrated nano-electromechanical system that enables precise positioning of a thermal emitter within nanometer distances from a room-temperature germanium photodetector to form a thermo-photovoltaic cell. We demonstrate over an order of magnitude enhancement of power generation (Pgen ~ 1.25 μWcm−2) in our thermo-photovoltaic cell by actively tuning the gap between a hot-emitter (TE ~ 880 K) and the cold photodetector (TD ~ 300 K) from ~ 500 nm down to ~ 100 nm. Our nano-electromechanical system consumes negligible tuning power (Pgen/PNEMS ~ 104) and relies on scalable silicon-based process technologies.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献