Abstract
AbstractQuasiperiodic systems are aperiodic but deterministic, so their critical behavior differs from that of clean systems and disordered ones as well. Quasiperiodic criticality was previously understood only in the special limit where the couplings follow discrete quasiperiodic sequences. Here we consider generic quasiperiodic modulations; we find, remarkably, that for a wide class of spin chains, generic quasiperiodic modulations flow to discrete sequences under a real-space renormalization-group transformation. These discrete sequences are therefore fixed points of a functional renormalization group. This observation allows for an asymptotically exact treatment of the critical points. We use this approach to analyze the quasiperiodic Heisenberg, Ising, and Potts spin chains, as well as a phenomenological model for the quasiperiodic many-body localization transition.
Funder
DOE | SC | Basic Energy Sciences
Alfred P. Sloan Foundation
NSF | Directorate for Mathematical & Physical Sciences | Division of Materials Research
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献