Abstract
AbstractIt is commonly believed that the most efficient way to pack a finite number of equal-sized spheres is by arranging them tightly in a cluster. However, mathematicians have conjectured that a linear arrangement may actually result in the densest packing. Here, our combined experimental and simulation study provides a physical realization of the finite sphere packing problem by studying arrangements of colloids in a flaccid lipid vesicle. We map out a state diagram displaying linear, planar, and cluster conformations of spheres, as well as bistable states which alternate between cluster-plate and plate-linear conformations due to membrane fluctuations. Finally, by systematically analyzing truncated polyhedral packings, we identify clusters of 56 ≤ N ≤ 70 number of spheres, excluding N = 57 and 63, that pack more efficiently than linear arrangements.
Funder
EC | Horizon 2020 Framework Programme
Ministry of Education, Culture, Sports, Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献