Surface photogalvanic effect in Ag2Te

Author:

Xie Xiaoyi,Leng Pengliang,Ding ZhenyuORCID,Yang JinshanORCID,Yan Jingyi,Zhou Junchen,Li ZihanORCID,Ai Linfeng,Cao Xiangyu,Jia Zehao,Zhang Yuda,Zhao Minhao,Zhu WenguangORCID,Gao YangORCID,Dong Shaoming,Xiu FaxianORCID

Abstract

AbstractThe bulk photovoltaic effect (BPVE) in non-centrosymmetric materials has attracted significant attention in recent years due to its potential to surpass the Shockley-Queisser limit. Although these materials are strictly constrained by symmetry, progress has been made in artificially reducing symmetry to stimulate BPVE in wider systems. However, the complexity of these techniques has hindered their practical implementation. In this study, we demonstrate a large intrinsic photocurrent response in centrosymmetric topological insulator Ag2Te, attributed to the surface photogalvanic effect (SPGE), which is induced by symmetry reduction of the surface. Through diverse spatially-resolved measurements on specially designed devices, we directly observe that SPGE in Ag2Te arises from the difference between two opposite photocurrent flows generated from the top and bottom surfaces. Acting as an efficient SPGE material, Ag2Te demonstrates robust performance across a wide spectral range from visible to mid-infrared, making it promising for applications in solar cells and mid-infrared detectors. More importantly, SPGE generated on low-symmetric surfaces can potentially be found in various systems, thereby inspiring a broader range of choices for photovoltaic materials.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3