Demethylation C–C coupling reaction facilitated by the repulsive Coulomb force between two cations

Author:

Zhang Xiaoping,Huang Keke,Fu YanlinORCID,Zhang Ni,Kong XiangleiORCID,Cheng Yuanyuan,Zheng Mingyu,Cheng Yihao,Zhu Tenggao,Fu BinaORCID,Feng ShouhuaORCID,Chen HuanwenORCID

Abstract

AbstractCarbon chain elongation (CCE) is normally carried out using either chemical catalysts or bioenzymes. Herein we demonstrate a catalyst-free approach to promote demethylation C–C coupling reactions for advanced CCE constructed with functional groups under ambient conditions. Accelerated by the electric field, two organic cations containing a methyl group (e.g., ketones, acids, and aldehydes) approach each other with such proximity that the energy of the repulsive Coulomb interaction between these two cations exceeds the bond energy of the methyl group. This results in the elimination of a methyl cation and the coupling of the residual carbonyl carbon groups. As confirmed by high-resolution mass spectrometry and isotope-labeling experiments, the C–C coupling reactions (yields up to 76.5%) were commonly observed in the gas phase or liquid phase, for which the mechanism was further studied using molecular dynamics simulations and stationary-point calculations, revealing deep insights and perspectives of chemistry.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Department of Science and Technology

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3