Neural control of lexical tone production in human laryngeal motor cortex

Author:

Lu JunfengORCID,Li YuanningORCID,Zhao ZehaoORCID,Liu Yan,Zhu YanmingORCID,Mao YingORCID,Wu JinsongORCID,Chang Edward F.ORCID

Abstract

AbstractIn tonal languages, which are spoken by nearly one-third of the world’s population, speakers precisely control the tension of vocal folds in the larynx to modulate pitch in order to distinguish words with completely different meanings. The specific pitch trajectories for a given tonal language are called lexical tones. Here, we used high-density direct cortical recordings to determine the neural basis of lexical tone production in native Mandarin-speaking participants. We found that instead of a tone category-selective coding, local populations in the bilateral laryngeal motor cortex (LMC) encode articulatory kinematic information to generate the pitch dynamics of lexical tones. Using a computational model of tone production, we discovered two distinct patterns of population activity in LMC commanding pitch rising and lowering. Finally, we showed that direct electrocortical stimulation of different local populations in LMC evoked pitch rising and lowering during tone production, respectively. Together, these results reveal the neural basis of vocal pitch control of lexical tones in tonal languages.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke

Chinese Ministry of Science and Technology | Department of S and T for Social Development

Shanghai Science and Technology Development Foundation

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Shanghai Municipal Education Commission

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference44 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3