Molecular understanding of the critical role of alkali metal cations in initiating CO2 electroreduction on Cu(100) surface

Author:

Zhang ZhichaoORCID,Li Hengyu,Shao Yangfan,Gan LinORCID,Kang Feiyu,Duan Wenhui,Hansen Heine AntonORCID,Li JiaORCID

Abstract

AbstractMolecular understanding of the solid–liquid interface is challenging but essential to elucidate the role of the environment on the kinetics of electrochemical reactions. Alkali metal cations (M+), as a vital component at the interface, are found to be necessary for the initiation of carbon dioxide reduction reaction (CO2RR) on coinage metals, and the activity and selectivity of CO2RR could be further enhanced with the cation changing from Li+ to Cs+, while the underlying mechanisms are not well understood. Herein, using ab initio molecular dynamics simulations with explicit solvation and enhanced sampling methods, we systematically investigate the role of M+ in CO2RR on Cu surface. A monotonically decreasing CO2 activation barrier is obtained from Li+ to Cs+, which is attributed to the different coordination abilities of M+ with *CO2. Furthermore, we show that the competing hydrogen evolution reaction must be considered simultaneously to understand the crucial role of alkali metal cations in CO2RR on Cu surfaces, where H+ is repelled from the interface and constrained by M+. Our results provide significant insights into the design of electrochemical environments and highlight the importance of explicitly including the solvation and competing reactions in theoretical simulations of CO2RR.

Funder

Ministry of Science and Technology of the People’s Republic of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3