A multicenter proof-of-concept study on deep learning-based intraoperative discrimination of primary central nervous system lymphoma

Author:

Zhang XinkeORCID,Zhao Zihan,Wang RuixuanORCID,Chen Haohua,Zheng XueyiORCID,Liu Lili,Lan Lilong,Li Peng,Wu Shuyang,Cao Qinghua,Luo Rongzhen,Hu WanmingORCID,lyu Shanshan,Zhang Zhengyu,Xie DanORCID,Ye YapingORCID,Wang YuORCID,Cai MuyanORCID

Abstract

AbstractAccurate intraoperative differentiation of primary central nervous system lymphoma (PCNSL) remains pivotal in guiding neurosurgical decisions. However, distinguishing PCNSL from other lesions, notably glioma, through frozen sections challenges pathologists. Here we sought to develop and validate a deep learning model capable of precisely distinguishing PCNSL from non-PCNSL lesions, especially glioma, using hematoxylin and eosin (H&E)-stained frozen whole-slide images. Also, we compared its performance against pathologists of varying expertise. Additionally, a human-machine fusion approach integrated both model and pathologic diagnostics. In external cohorts, LGNet achieved AUROCs of 0.965 and 0.972 in distinguishing PCNSL from glioma and AUROCs of 0.981 and 0.993 in differentiating PCNSL from non-PCNSL lesions. Outperforming several pathologists, LGNet significantly improved diagnostic performance, further augmented to some extent by fusion approach. LGNet’s proficiency in frozen section analysis and its synergy with pathologists indicate its valuable role in intraoperative diagnosis, particularly in discriminating PCNSL from glioma, alongside other lesions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3