Fusion of Majorana bound states with mini-gate control in two-dimensional systems

Author:

Zhou TongORCID,Dartiailh Matthieu C.,Sardashti Kasra,Han Jong E.ORCID,Matos-Abiague Alex,Shabani Javad,Žutić IgorORCID

Abstract

AbstractA hallmark of topological superconductivity is the non-Abelian statistics of Majorana bound states (MBS), its chargeless zero-energy emergent quasiparticles. The resulting fractionalization of a single electron, stored nonlocally as a two spatially-separated MBS, provides a powerful platform for implementing fault-tolerant topological quantum computing. However, despite intensive efforts, experimental support for MBS remains indirect and does not probe their non-Abelian statistics. Here we propose how to overcome this obstacle in mini-gate controlled planar Josephson junctions (JJs) and demonstrate non-Abelian statistics through MBS fusion, detected by charge sensing using a quantum point contact, based on dynamical simulations. The feasibility of preparing, manipulating, and fusing MBS in two-dimensional (2D) systems is supported in our experiments which demonstrate the gate control of topological transition and superconducting properties with five mini gates in InAs/Al-based JJs. While we focus on this well-established platform, where the topological superconductivity was already experimentally detected, our proposal to identify elusive non-Abelian statistics motivates also further MBS studies in other gate-controlled 2D systems.

Funder

United States Department of Defense | Defense Advanced Research Projects Agency

United States Department of Defense | United States Navy | Office of Naval Research

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3