Abstract
AbstractCellular decision making often builds on ultrasensitive MAPK pathways. The phosphorylation mechanism of MAP kinase has so far been described as either distributive or processive, with distributive mechanisms generating ultrasensitivity in theoretical analyses. However, the in vivo mechanism of MAP kinase phosphorylation and its activation dynamics remain unclear. Here, we characterize the regulation of the MAP kinase Hog1 in Saccharomyces cerevisiae via topologically different ODE models, parameterized on multimodal activation data. Interestingly, our best fitting model switches between distributive and processive phosphorylation behavior regulated via a positive feedback loop composed of an affinity and a catalytic component targeting the MAP kinase-kinase Pbs2. Indeed, we show that Hog1 directly phosphorylates Pbs2 on serine 248 (S248), that cells expressing a non-phosphorylatable (S248A) or phosphomimetic (S248E) mutant show behavior that is consistent with simulations of disrupted or constitutively active affinity feedback and that Pbs2-S248E shows significantly increased affinity to Hog1 in vitro. Simulations further suggest that this mixed Hog1 activation mechanism is required for full sensitivity to stimuli and to ensure robustness to different perturbations.
Funder
Doctores Banco de Santander-María de Maeztu at Universitat Pompeu Fabra
Generalitat de Catalunya
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献