Abstract
AbstractChirality constitutes an inherent attribute of nature. The catalytic asymmetric synthesis of molecules with central, axial, and helical chirality is a topic of intense interest and is becoming a mature field of research. However, due to the difficulty in synthesis and the lack of a prototype, less attention has been given to planar chirality arising from the destruction of symmetry on a single planar ring. Herein, we report the catalytic asymmetric synthesis of planar-chiral dianthranilides, a unique class of tub-shaped eight-membered cyclic dilactams. This protocol is enabled by cinchona alkaloid-catalyzed (dynamic) kinetic resolution. Under mild conditions, various C2- or C1-symmetric planar-chiral dianthranilides have been readily prepared in high yields with excellent enantioselectivity. These dianthranilides can serve as an addition to the family of planar-chiral molecules. Its synthetic value has been demonstrated by kinetic resolution of racemic amines via acyl transfer, enantiodivergent synthesis of the natural product eupolyphagin, and preliminary antitumor activity studies.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC